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A numer i ca l  solut ion is  ob ta ined to  the p rob lem concerning a p r e s s u r e  m e a s u r e m e n t  at the bound- 
a r y  between an idea l  c o m p r e s s i b l e  fluid and a so l id  wai l .  It  i s  a s s u m e d t h a t  the f lu idoccup ies  
a semi inf in i te  cy l inde r  with a r ig id  b o t t o m i n t o w h i c h a n e l a s t i c d i s c i s  i n s e r t e d a n d h e l d f i r m l y  
around i ts  edges .  Motion is produced by a p r e s s u r e  wave or ig ina t ing  at  infinity.  A f in i t e -d i f -  
f e renee  g r id  for  this  app l ica t ion  is  d e s c r i b e d  and the r e s u l t s  of ac tual  ca lcu la t ions  a r e  shown. 

The elastic disc placed in the plane of the bottom wall and constrained around its edges serves as the 
sensing element in the measurement of stresses at the boundary between the continuous medium and that 
rigid wail. The stress in the medium is gaged by the deflection of this disc, assuming a linear relation be- 
tween both quantities. The proportionality factor is assigned the value it has when the medium is an ideal 
fluid at rest. Obviously, such a method of measuring stress is fraught with inevitable errors which, in the 
best case, can only be minimized. 

There are two basic sources of error here. First, under typical circumstances there may be shear 
stresses present in the medium. For example, the medium represents an elastic half-space bordering on 
a rigid stationary plane which contains a hole covered with the elastic disc. The medium is loaded and comes 
to rest. No matter how thin the disc is, its deflection under a fixed stress will obviously be limited. If the 
medium is a fluid, however, then under a fixed pressure the deflection will increase infinitely as the thick- 
ness of the disc approaches zero. Second, an error is produced if the stresses in the medium vary suffi- 
ciently fast. This error is simply due to the inertia of both the disc and the medium. These two errors are 
respectively defined as static and dynamic ones and, naturally, they may occur simultaneously, but it is more 
convenient to consider them separately. 

The following analysis concerns the dynamic error only. 

I. The simplest example of a medium free of any static error is an ideal compressible fluid. It is 
assumed here that such a medium occupies a semiinfinite circular cylinder with a rigid bottom into which 
a circular elastic disc is inserted held firmly around its edges (Fig. i). Displacements in the medium are 
assumed small, and the equations describing them linear. The units of measure are chosen so that the ra- 
dius of the disc, the density of the medium, and the acoustic velocity in the medium are all equal to one. 

We use cylindrical coordinates z, r, 0, and time t. The medium occupies a semiinfinite cylinder z > 0, 
r<R, R_>I. The coordinates of the disc are z=0, r-i (Fig. i). 

The motion within the medium is assumed a potential flow, with the potential r independent of 0 and 
satisfying the wave equation 

~t t -~-~zz@ A~ for z ~ 0 ,  r ~ R  (A~=%r-]-~r /r )  (1.1) 

D i sp l acemen t s  u 1 and u 2 and p r e s s u r e  p a r e  r e l a t ed  to r as  follows: ut = Cr, u2 = Sz, and p = -Ct t .  The 
def lec t ion  of the d isc  is  denoted by w. Continuity of d i s p l a c e m e n t s  i s  maintained:  u2=w at  z = O ,  t>- O, and 
r---1. 
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Fig. 1 

The boundary conditions are defined as 

% = 0  at r = R ,  z > O ,  ~ = 0  at z = O ,  t < r < R  
*~tt + a l A A ~  -- a2~u = 0 at z = O, r < 1 

~z=O, ~ z r = O  at z = O ,  r = t  

In d i m e n s i o n a l  v a r i a b l e s  

E l l  "2 pll~ 
a l  ~ t2 ( 1 - -  r p~ls 2 ' as = p~ll 

(1.2) 

where II is the radius, 12 is the thickness, Pl is the density, E is the Young modulus, and ff is the Poisson 
ratio of the disc, while P2 and c are the density of the medium and the acoustic velocity in it. 

The i n i t i a l  conditions at t= 0 are 

~ = - - z  z / 2 ,  ~t = - - z  for. z~O~  r ~ R  
a~z -~ ~zt = 0 for  z = O, r ~ l  (1.3) 

Such initial conditions correspond to a unit-step pressure originating at infinity. 

This mathematical formulation of the problem is quite unwieldy, and a closed analytical solution has 
not been successfully obtained. Such problems usually reduce to integral equations which have to be solved 
by approximation or by numerical methods (see, e.g. [i]). 

Here the problem will be solved by straight numerical computations. Since computations are feasible 
only for a finite and small number of parameter combinations, the problem requires a preliminary analysis, 
which will be carried out in the subsequent sections 2 and 3. 

Of primary interest in the problem is the deflection of the disc at its center, as a function of time, 
since it is this variable which is measured in a practical test and which is used for gaging the pressure in 

the medium. 

2. We now consider the solution to Eqs. (i.i) and (1.2) in the form* 

~9 = (p (Z, r) e x p  ( i o ) ] ) ,  r --> 0 for Z ~ oe ,  (p > 0 ( 2 . 1 )  

The e x i s t e n c e  of a so lu t ion  of the (2.1) k ind  s i g n i f i e s  tha t  the d i sc  can  v i b r a t e  wi thout  d a m p i n g  even i f  
the  p r e s s u r e  a t  in f in i ty  i s  z e r o  and,  consequen t ly ,  the p r e s s u r e  a t  in f in i ty  m a y  not  be  g a g e d  by  the  d i s p l a c e -  
men t  of the  d i s c .  

I t  wi l l  be shown f u r t h e r  tha t  s y s t e m  {1.1) and  (1.2) cannot  have a s o l u t i o n  of  the (2.1) k ind .  Th i s  f ac t  
s e e m s  qui te  obvious ,  but  such  so lu t i ons  m a y  e x i s t  wi th  d i f f e r e n t  b o u n d a r y  cond i t i ons .  

We i n t r o d u c e  func t ion  v (z) de f ined  a s  
R 

v = j" (9 (z, r) rdr  (2.2) 
0 

From (I.i) and condition ~r = 0 at r= R we obtain an equation for v 

o3~v + v~z ~- 0 (2.3) 

Obv ious ly ,  t h i s  equa t ion  has  no n o n t r i v i a l  so lu t i ons  which  v a n i s h  a t  in f in i ty  and, t h e r e f o r e ,  v =  0. S ince  
~0-- 0, i t  fo l lows  f r o m  (2.2) that  v ( r ) = 0  only i f  e ( z ,  r ) = 0  fo r  e v e r y  r < R .  Thus ,  s y s t e m  (1.1) and (1.2) has  no 
n o n t r i v i a l  s o l u t i o n s  of  the  (2.1) k ind .  

Le t  us  c o n s i d e r  b o u n d a r y  cond i t i ons  which  d i f f e r  f r o m  (1.2) in that  ~ = 0 at  r =  R and Sz =ACz = 0 at  z = 0, 
r = l .  We wi l l  f ind the  p a r t i c u l a r  so lu t ion  l e t t i ng  R = I .  

* The inequality ~ -> 0 restricts somewhat the content of the statement which will be proved subsequently. 
It is entirely probable, however, that this statement will remain valid also when the sign of ~ (r, z) changes. 
This is confirmed by the numerical results which yield the steady-state solution for t ~. In the special 
case where R= 1 (the disc takes up the entire bottom of the "tube") a simple solution is possible bythe method 
of separating the variables, and it becomes clearly evident here how the choice of boundary conditions affects 
the occurrence of free vibrations. In our example q~ (r, z) certainly does not retain the same sign [Editor' s note]. 
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The solut ion will  be sought in the f o r m  

~P = I0 (%r) exp (i(0t - ~tz) (2.4) 

w h e r e  J0 is  a B e s s e l  function,  X is  the  f i r s t  roo t  of equat ion J0(X) = 0, and p and c0 m u s t  be chosen  so as  to 
sa t i s fy  Eq.  (1.1) and the boundary  condi t ions .  

If  p> 0, then obvious ly  (2.4) s a t i s f i e s  condi t ions  (2.1). 

In se r t i ng  (2.4) into (1.1) and (1.2), we obta in  equa t ions  f o r  c~ and # 

co~ + ~2 _ X~ = O, ~ ( ~  - -  a1~ 4) § a~(0 ~ = 0 (2 .5 )  

We will prove that (2.5) always has a solution. Indeed, considering condition p>O, (2.5) can yield an 
equation for a) 

(02 _ alX ~ -4- a,.(0~ / ] / ' ~  - -  co~ = 0 ( 2 . 6 )  

It is  evident  tha t  the l e f t -hand  s i d e  of  this  equat ion is  a monoton ic  funct ion of co when 0 < a)<X, be ing  
nega t ive  when co = 0 but  pos i t ive  when w --X and that ,  t h e r e f o r e  (2.6) has  a unique solut ion on the in te rva l  
(0, X). 

With p and w chosen  so as  to sa t i s fy  (2.5), then, (2.4) is  a solut ion of  the (2.1) kind. 

3. We next obtain an a p p r o x i m a t e  solut ion of the c o n s t r a i n t  p r o b l e m  (1.1), (1.2), and (1.3) with the ad-  
di t ional  a s s u m p t i o n  that  R= 1. Th i s  solut ion d e s c r i b e s  the d isc  def lec t ion  as  a funct ion of t ime and conta ins  
no i n fo rma t ion  about the p r e s s u r e  f ield.  

We in t roduce  funct ion v(t, z) defined s i m i l a r l y  a s  (2.2) 
1 

v (t, z) = 2 S ~ (t, z, r) rdr (3.1) 
0 

In teg ra t ing  Eq.  (1.1) o v e r  r y ie lds  the  fol lowing equat ion fo r  v: 

v t t  = v ~ .  ( 3 . 2 )  

E s s e n t i a l  u se  has been  m a d e  he re  of  the condi t ion  that  b e / o r =  0 at  r = 0 ,  and z >0.  

In t eg ra t ing  (1.3), we obtain  the in i t ia l  condi t ions  fo r  (3.2) 

v(O, z)---=--z 212, v,(O, z)------z for z~O (3.3) 
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For simplification, the disc deflection will be sought in the form 

w = Q (t) (t -- r~) 2 / 32 (3.4) 

where  Q(t) is  an unknown function.  The re l a t ion  between w and r has  
been  defined thus, in o r d e r  that  (3.4) should c o r r e c t l y  de sc r ibe  the s ta t ic  
def lec t ion  of the d isc .  

F r o m  (3.4) and (3.1) we obtain the boundary  condi t ion fo r  (3.2): 
v z (t, 0) = i/gGQ (t). 

This condition together with (3.3) defines the solution to (3.2): 

t~Z 

v = - -  j" 1/96Q.(s) d s - - t  2 -  (3.5) g2 

0 

Since the r e l a t ion  be tween w and r has  been  fixed, condi t ions  (1.2) cannot  be sa t i s f ied .  We will  r e -  
quire ,  then, that  they  be sa t i s f ied  in the mean  with r e s p e c t  to r .  This  will  r e su l t  in an equat ion fo r  Q(t) 

Q" + a~Q" + 96alQ - - t92a~  (3.6) 

The ini t ia l  condi t ions  fo r  (3.6) a r e  obtained f r o m  (1.3) and they a r e  Q(0)= Q' (0)= 0. 

Equat ion  (3.6) i s  the c l a s s i c a l  equat ion of damped  v ibra t ions ;  the p r o p e r t i e s  of i t s  so lut ion a r e  wel l -  
known and need not be d i s c u s s e d  here .  The r e su l t s  of an ac tual  solut ion a r e  plot ted in F igs .  2-6 w i tha  dashed  

line. 

The s y m m e t r y  p r o p e r t i e s  of the  p r o b l e m  w e r e  ha rd ly  used  in the de r iva t ion  of (3.6) and, t he r e fo re ,  
the en t i re  r e a s o n i n g  r e m a i n s  val id  if the d isc  is  of any suff ic ient ly  smoo th  shape, as  long as  it occupies  the 
en t i re  bo t tom of the c y l i n d e r -  and in that  ca se  the coef f ic ien ts  in (3.6) will  be di f ferent .  

4. We will  next  d e s c r i b e  a n u m e r i c a l  method f o r  solving the bas i c  p r o b l e m  and will  show the r e s u l t s  
of ac tual  computa t ions .  F o r  the spec ia l  ca se  R = I ,  a c o m p a r i s o n  is  made  with the approx ima te  solution. 

The  p r o b l e m  is  so lved  n u m e r i c a l l y  us ing  the convent ional  p rocedu re ;  i .e. ,  all de r iva t ives  a r e  r e p l a c e d  
by d i f fe rence  r a t io s  and the r e su l t i ng  s y s t e m  of l i nea r  a lgeb ra i c  equat ions  is fed to a compu te r .  

Equat ion  (1.1) with condi t ions  (1.2) and (1.3) is  not amenab le  to a n u m e r i c a l  t r ea tmen t ,  because  the s o -  
lut ion is  sought in a semi inf in i te  r eg ion  and the ini t ia l  condi t ions  a r e  not cont inuous,  so  that  the p r o b l e m  
m u s t  f i r s t  be r e f o r m u l a t e d .  

The s ingu la r i ty  in the ini t ia l  condi t ions  can  be eas i ly  ex t rac ted .  F o r  this  purpose ,  the solut ion is  w r i t -  

ten as 

= @1 -~- ~2, whereQ2 = (t -- z) ~ / 2 lot Z > t, ~2 =- 0 for z < t 

It is  evident  f r o m  the l inea r i ty  of the p r o b l e m  that  ~bi sa t i s f i e s  (1.1) and (1.2) with the init ial  condi t ions  

l h = - - z ~ ,  ~ l t = 0  at t = 0  

Moreover, r162 when z <t, spec i f ica l ly  when z=  0, t>  0. Since the d i sc  def lec t ion  a s  a funct ion of  t ime 
is of primary interest here, we will henceforth make no distinction between ~ and ~i. 

The initial conditions contain a differential equation in Cz and, therefore, it is expedient to change the 

variables 

w (t, r ) = , z ( t ,  O, r), 
p (t, z,  r) = - - , t t  (t, z, r) 

This gives an equation for p: 

with the condi t ions  

Ptt = Pzz + hp (Ap ~ Prr ~ Pr/r) (4.1) 

Pr (t, 0, z) = Pr (t, R, z) = 0, Pz (t, r, 0) = - -  wtt 
p(0, r , z ) = 2 ,  Pt(0, r , z ) = 0  (4.2) 
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Now w (t, r)  = 0 fo r  1 -< r ~ R, and  f o r  r < 1 the  fo l lowing  equat ion:  

w t t +  al AAu; + a2p = 0 (4.3) 

i s  s a t i s f i e d  by  w wi th  the  cond i t i ons  

w~ (t, o) = w ~  (t, o) = o 

w (t, i)  = wr (t, i)  = 0. w (0, r) = w t (0, r) = 0 (4.4) 

The  b o u n d a r y  cond i t i ons  (4.2) and  (4.4) inc lude  one fo r  r =  0 wh ich  is  b a s e d  on s y m m e t r y  and r e d u c e s  
to  the  s t i p u l a t i o n  tha t  p and w m u s t  be  even  func t ions  of r if  they  do not  depend  on 0. 

R e l a t i o n s  (4.1), (4.2), (4.3), and (4.4) a r e  fu l ly  equ iva l en t  to the  o r i g i n a l  p r o b l e m  f o r  z <t .  

I n a s m u c h  a s  a n u m e r i c a l  s o l u t i o n  i s  f e a s i b l e  only wi th in  a l i m i t e d  reg ion ,  an  a dd i t i ona l  b o u n d a r y  con -  
d i t i on  m u s t  be  e n t e r e d  into  the  p r o b l e m .  The s e m i i n f i n i t e  c y l i n d e r  i s  i n t e r s e c t e d  a t  z = z0, and at  t h i s b o u n d -  
a r y  we s t i p u l a t e  tha t  

P t + P z = O  for z = z  0 (4.5) 

The  s i g n i f i c a n c e  of th i s  s t i p u l a t i o n  wi l l  b e c o m e  c l e a r  i f  we c o n s i d e r  the obl ique  c o i n c i d e n c e  of a p l a n e  
wave  on a p lane  s u r f a c e  w h e r e  (4.5) is  s a t i s f i e d .  Le t  cond i t i on  (4.5) be  s t i p u l a t e d  in the  xz p lane  a t  z = 0, and 
l e t  an i n c i d e n t  wave  p = f ( t - c o s  c ~ z - s i n ~ x )  be  g iven  w h e r e  z < 0. The r e f l e c t e d  wave  wi l l  then  be  

i - cos ct 
P = i --}- cos a [ (t -{- cos ctz -- sin ctx) (4.6) 

If t h e r e  i s  no b o u n d a r y  a t  z = 0, t h e r e  w i l l  be no r e f l e c t e d  wave .  I t  i s  ev iden t  f r o m  (4.6) tha t  the r e f l e c -  
t ion  coe f f i c i en t  b e c o m e s  z e r o  f o r  n o r m a l  i n c i d e n c e  (c~ =0) and i s  a p p r o x i m a t e l y  ~2 f o r  s m a l l  a n g l e s  v~. 

A s  i s  to  be  expec t ed ,  at  a s u f f i c i e n t l y  l a r g e  z the  m o t i o n  w i l l  b e c o m e  o n e - d i m e n s i o n a l ,  and s t i p u l a t i o n  
(4.5) has  thus  been  j u s t i f i e d .  

The  r e g i o n  i s  bounded  wi th  r e s p e c t  to  r ,  but  i t  cou ld  happen  tha t  R>>I; in  th i s  c a s e  we a s s u m e  R = 3 ,  
and f o r  r = 3  we s t i p u l a t e  a cond i t ion  ana logous  to  {4.5). 

The  p r o b l e m  then  i s  to s o l v e  E q s .  (4.1)-(4.5) fo r  the  r e g i o n  0 -  < r - R ,  0-<z_<z0, t > 0 .  

At  po in t s  i n s i d e  t h i s  r e g i o n  Eq .  (4.1) i s  a p p r o x i m a t e d  by a t r i p l e - l a y e r  e x p l i c i t  s e c o n d - o r d e r  g r i d ,  
wi th  the  i n t e r v a l s  a long  the t i m e  and the  s p a c e  c o o r d i n a t e s  c h o s e n  so a s  to s a t i s f y  the Coura n t  cond i t ion  [2]. 
E q u a t i o n  (4.3) i s  s o l v e d  by  m e a n s  of an i m p l i c i t  g r i d .  The  r e a s o n  f o r  t h i s  i s  that ,  wi th  m o s t  of the  m a c h i n e  
t i m e  e x p e n d e d  on c o m p u t i n g  p at  p o i n t s  i n s i d e  the  r e g ion ,  i t  i s  d e s i r a b l e  to avo id  a d d i t i o n a l  r e s t r i c t i o n s  on 
the  t i m e  i n t e r v a l s ,  wh ich  would  e n t e r  in to  the  c o m p u t a t i o n  i f  an  e x p l i c i t  g r i d  w e r e  u s e d  f o r  (4.3). 

We u s e  the  fo l lowing  d e s i g n a t i o n s :  h f o r  i n t e r v a l s  a long  bo th  r and z, and  ~- f o r  the t i m e  i n t e r v a l s ,  

p~j~ = p(k'r, hi, hi), - -  2 ~ k ,  O ~ i ~ n 3 ,  - -  i ~ ] ~ n  2 

n 3 = R / h  , n~-~zo/h,  w ~ = w ( k z ,  hi), O ~ i ~ n ,  n = I / h  

In o r d e r  to  s a t i s f y  the C o u r a n t  condi t ion ,  we l e t  h= 2~-. 

In o r d e r  to  a p p r o x i m a t e  the  m - t h  d e r i v a t i v e  of  func t ion  f (0 ,  we i n t r o d u c e  c e n t r a l  d i f f e r e n c e  o p e r a t o r s  
6~ m and u n i l a t e r a l  d i f f e r e n c e  o p e r a t o r s  d~ m a long  ~, in  a c c o r d a n c e  with  

t i 
8~x] = ~ [1 (~ + ~0) - -  / (~ - -  ~0)1, 8 ~ 2 / =  ~ [/(~ +~0)  - -  2 / (~)  + l (~--~0)l  

t 
d~ ~] = ~ [3/(~) - -41  (~ - -  ~0) + ] (~ - -  2~o)1 (4.7) 

t 
d~'f = ~ [21 (~) - -  5/(~ - -  ~o) § 4/(~ - -  2~o ) - -  / (~ - -  3~o)] 

w h e r e  ~0=~ - i f  ~= t  and ~0=h if  ~ = r ,  z.  

F o r  an  a p p r o x i m a t i o n  of A we in t roduce  o p e r a t o r  q = 6r2+ r - 1 6 r  1. I t  i s  ev iden t  tha t  t h e s e  o p e r a t o r s  a p -  
p r o x i m a t e  the  r e s p e c t i v e  d e r i v a t i v e s  wi th in  a s e c o n d - o r d e r  a c c u r a c y .  

F o r  Eq .  (4.1) we u s e  a t r i p l e - l a y e r  e x p l i c i t  g r i d  

(St ~ - -  8~2~ - q) p~j~ = O, 0 ~ k, 0 < i < n~, 0 ~ 1 < n~ (4 .8)  
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The  b o u n d a r y  cond i t i ons  fo r  (4.8) b e c o m e  

(dz 1 ~- d t l ) p i j  ~ = 0 at 

d:zPoj ~ = 0 

(d~ 1 + adt 1) p~fl = 0  

w h e r e  (~=1 i f  R = 3  and a = 0  i f  I t < 3 .  

j =!n2, O ~ ~ ~ nn 

for O ~ / ~ n2 

at i---~t/3 , O ~ j ~ n  2 

(4.9) 

The boundary condition at z = 0 is Pz +wtt = 0. For an approximation of this condition we introduce ficti- 

tious points j =-i according to the formula 

pi  ~, - :  = p~.: + 2hd~2wi ~ (4.10) 

and a s s u m e  tha t  (4.8) i s  v a l i d  f o r  j = 0. 

By v i r t u e  of the  cond i t i on  p z + w t t = 0 ,  Eq.  (4.3) t r a n s f o r m s  into 

(t + a~h) wt, + a l A A w  -{- a2P (t, r, h) + o (h 2) ---- 0 

and i s  a p p r o x i m a t e d  by  a q u a d r u p l e - l a y e r  i m p l i c i t  g r i d  

(i  + ash) dt2wl ~ + alqqw~ ~ ~ a2p~ : = 0, k ~ i (4.11) 

The s i g n i f i c a n c e  of t h i s  not qui te  obvious  t r a n s f o r m a t i o n  can  be  e x p l a i n e d  on the e x a m p l e  of the one-  
d i m e n s i o n a l  equa t ion  Ptt  = Pzz,  wi th  the b o u n d a r y  cond i t i ons  wt t  = - a 2 p ,  Pz + wtt  = 0 at  z = 0 and the i n i t i a l  con-  
d i t i ons  w =  w t =0,  p = p t = 0  a t  t = 0 .  

Le t t i ng  h = %  we  ob t a in  a n a l o g o u s l y  to  (4.8) 

If+1 _ k - -  k 7f-:  Pj --  Pj+l t Pj-~ - -  Pj , 0 ~ / < oo , O~k 

PT: =PJ: = l ,  - -  i ..</ (4.12) 

The  f i c t i t i o u s  p o i n t s  j = - 1  a r e  i n t r o d u c e d  a n a l o g o u s l y  to (4.10) 

P~-I = Pl~ "~- 2hwtt ( 4 . 1 3 )  

Let  us  c o n s i d e r  two w a y s  of a p p r o x i m a t i n g  Eq.  (4.13). The f i r s t  way  i s  a c c o r d i n g  to  (4.3), the  o t h e r  
way  i s  a c c o r d i n g  to  (4.11) 

wtt --}- a~po ~ = O, ( l  + a2h) wtt + a2pl I~ : 0 (4.14) 

k+1 k j -> k-~ k We can infer from (4.12) that Pj+I -}'j = 0 for 0, 0. From this we obtain an equation for P0 

po~+! + 2~hpo ~ - p~o -~ = o ( 4 . 1 5 )  

b a s e d  on the f i r s t  m e t h o d  of a p p r o x i m a t i n g  the  b o u n d a r y  cond i t ions ,  o r  

p~+: ~--a~h ~ - : = 0  (4.16) 
- IT::: po 

b a s e d  on the s econd  m e t h o d .  

I t  i s  ev iden t  t ha t  (4.16) i s  s t a b l e  fo r  any h -  > 0 whi le  (4.15) i s  u n s t a b l e  f o r  e v e r y  h > 0 .  

The b o u n d a r y  cond i t i ons  f o r  (4.3) a t  r =  1 a r e :  w =  0 and Wr= 0. The  i n t e r v a l  a long  r h a s  been  c h o s e n  
so a s  to m a k e  r = 1 a poin t  on the  g r i d  and,  t h e r e f o r e ,  the f i r s t  of t h e s e  cond i t i ons  i s  s a t i s f i e d  e x a c t l y .  

We now i n t r o d u c e  the f i c t i t i o u s  po in t  r = 1 + h, and the  s e c o n d  b o u n d a r y  cond i t i on  b e c o m e s  Wn+ t =Wn_ t. 

In o r d e r  to  a p p r o x i m a t e  the  cond i t i ons  at  r =  0, we i n t r o d u c e  f i c t i t i o u s  p o i n t s  r = - h  and r = - 2 h  m a k i n g  
the b o u n d a r y  cond i t i ons  w_ 1 = w 1 and w-2 = w2. E q u a t i o n  (4.11) i s  a s s u m e d  v a l i d  f o r  0 -~ i -< n -  1. Equa t ion  (4.3) 
has  a s i n g u l a r i t y  a t  r = 0, h o w e v e r ,  wh ich  m a k e s  it n e c e s s a r y  to  m o d i f y  (4.11) at  i = 0.1. 

A r e l a t i v e l y  s i m p l e  c a l c u l a t i o n  w i l l  show tha t  

A A w =  i 6  (w~--4wl-}-3wo)/3h4-~-o(h ~) f o r  r = 0  (4.17) 

h A w ~  2w3-- w ~ - J r - - ~ w : - 4 w o ) / h  4 + o ( h  a) fo r  r = h  

T h e r e f o r e ,  a t  i = 0.1 we m u s t  r e p l a c e  e x p r e s s i o n  qqw i in (4.11) by the  r i g h t - h a n d  s i d e s  of (4.12). 
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The initial conditions for k= 0,-I, and-2 are taken as 

E q u a t i o n  (4.11) i s  of the  p e n t a d i a g o n a l  t ype  and t h e r e  e x i s t s  fo r  i t  an e f f i c i en t  m e t h o d  of i t e r a t i o n  [2], 
wh ich  wi l l  be  u s e d  h e r e .  

The  s y s t e m  of f i n i t e - d i f f e r e n c e  equa t ions  (4.8)-(4.11) a p p r o x i m a t e s  the o r i g i n a l  s y s t e m ;  i t  i s  n e c e s -  
s a r y  to  e s t i m a t e  the  i n c u r r e d  e r r o r ,  h o w e v e r ,  s i n c e  th i s  e r r o r  w i l l  d e t e r m i n e  the  r e l i a b i l i t y  of the  r e s u l t s .  
H e n c e f o r t h  the  func t ion  w0( t )=w(t ,  0) w i l l  be  u n d e r s t o o d  to be  the  so lu t ion .  

We c o n s i d e r  the  s t a t i c  p r o b l e m ,  wh ich  c o r r e s p o n d s  to (4.1)-(4.4) .  Th i s  i s  the p r o b l e m  when 0 / 0 t - -  0 
in (4.1)-(4.4) and the initial conditions are removed. The obvious solution to it is 

a2 
p=2, w(r)=-- 3-~-~a~ (r2--1) ~ (4.18) 

A finite-difference approximation of this problem is obtained by letting dt 2 = 5t2= 0 in (4.8)-(4.11). The 
resulting system of equations, too, has a simple solution: 

a2 2 i 2 
= -  ( , -  (4.19) 

From (4.18) and (4.19) we obtain an expression for the approximation error 

w0 -- w (0) 2 2h~ (4.20) 
w (0) n~ - 

F r o m  p h y s i c a l  c o n s i d e r a t i o n s  and on the  b a s i s  of the  a n a l y s i s  in s e c t i o n  2, it  a p p e a r s  p r o b a b l e  tha t  the s o l u -  
t i on  of (4.1)-(4.4) w i l l  a p p r o a c h  the  s t e a d y - s t a t e  so lu t i on  a s  t - ~  and,  t h e r e f o r e ,  (4.20) m a y  be t r e a t e d  a s  a 
conservative estimate of the maximum error. 

This analysis applies to the error in approximating the space derivatives, and advantage has beentaken 
of the fact that excluding the time dependence simplifies the situation considerably. The time derivatives 
can be treated in an analogous manner. 

Inasmuch as a fitting specific case cannot be found, a model problem was used for evaluation. A one- 
dimensional problem was considered for Eq. (3.2) with the boundary conditions (3.4) and (3.6). 

The problem has an exact solution, which could be obtained from (3.6). Equation (3.2) as well as the 
boundary and the initial conditions were replaced by finite-difference equations analogous to (4.8)-(4.11). 
These equations were solved on the interval 0-t ~ i0 and the mean-squared deviation of the resulting solu- 
tion from the exact solution was calculated. 

The numerical value of this deviation for the various parameter values is denoted by ~ and shown in 
Figs. 2-6. 

The results obtained for specific values of parameters a I and a 2 are shown in Figs. 2-6. Curves 1 
represent w0(t ) for R=I, n=n3=10 , and n2=30 , while curves 2 represent w0(t ) for R=3, n= i0, and n2=n3=30, 
with the solution to (3.6) shown by a dashed line. Obviously, various values of the dimensional parameters 
may correspond to the same combination of a i and a 2. One may assume that all parameters for the graphs 
in Figs. 2-4 are the same except the disc thickness, for example, which decreases by a factor of 2.0 from 
graph to graph, and that the graphs in Figs. 5 and 6 are the same as in Figs. 2 and 3, except for a i0 times 
higher modulus of elasticity. For sufficiently rigid discs, obviously, all curves will be close and, in particu- 
lar, curves 1 and 2 in Fig. 2 will merge within plotting accuracy. 

In summarizing, we conclude that (3.6) yields a quantitatively satisfactory solution for sufficiently 
rigid discs and that also otherwise the agreement with the exact solution is qualitatively close. 

The authors thank L. M. Flitman for reviewing the work. 
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