INTERACTION BETWEEN AN ACOUSTIC WAVE
AND A DISC

A. M. Skobeev* UDC 539.319

A numerical solution is obtainedto the problem concerning a pressure measurement at the bound-
ary between an ideal compressible fluid and a solid wall. It is assumedthat the fluid occupies
a semiinfinite cylinder with a rigid bottom intowhichanelasticdiscis inserted and held firmly
around its edges. Motion is produced by a pressure wave originating at infinity. A finite-dif-
ference grid for this application is described and the results of actual calculations are shown,

The elastic disc placed in the plane of the bottom wall and constrained around its edges serves as the
sensing element in the measurement of stresses at the boundary between the continuous medium and that
rigid wall, The stress in the medium is gaged by the deflection of this disc, assuming a linear relation be-
tween both quantities. The proportionality factor is assigned the value it has when the medium is an ideal
fluid at rest. Obviously, such a method of measuring stress is fraught with inevitable errors which, in the
best case, can only be minimized.

There are two basic sources of error here. First, under typical circumstances there may be shear
stresses present in the medium. For example, the medium represents an elastic half-space bordering on
a rigid stationary plane which contains a hole covered with the elastic disc. The mediumisloaded and comes
to rest. No matter how thin the disc is, its deflection under a fixed stress will obviously be limited. If the
medium is a fluid, however, then under a fixed pressure the deflection will increase infinitely as the thick-
ness of the disc approaches zero. Second, an error is produced if the stresses in the medium vary suffi-
ciently fast. This error is simply due to the inertia of both the disc and the medium. These two errors are
respectively defined as static and dynamic ones and, naturally, they may occur simultaneously, butitis more
convenient to consider them separately. '

The following analysis concerns the dynamic error only.

1. The simplest example of a medium free of any static error is an ideal compressible fluid, Itis
assumed here that such a medium occupies a semiinfinite circular cylinder with a rigid bottom into which
a circular elastic disc is inserted held firmly around its edges (Fig. 1). Displacements in the medium are
assumed small, and the equations describing them linear. The units of measure are chosen so that the ra-
dius of the disc, the density of the medium, and the acoustic velocity in the medium are all equal to one.

We use cylindrical coordinates z, r, ¢, and time t. The medium occupies a semiinfinite cylinder z> 0,
r<R, R=1. The coordinates of the disc are z=0, r=1 (Fig. 1).

The motion within the medium is assumed a potential flow, with the potential y independent of ¢ and
satisfying the wave equation

Yir=V,, + A% for 20, r<R Qp=v, +9,/7 1.1)

Displacements uy and uy and pressure p are related to y as follows: w =yy, uy=1),, and p=—y¢. The
deflection of the disc is denoted by w. Continuity of displacements is maintained: u,=w at z=0, t=0, and
r=1.
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The boundary conditions are defined as

P,=0 at r=R, 2>0,¢9,=0at z=0,1<r<R

Vo + @AY, —ayp, =0  at z=0, r<1
‘lpzsovlpzr:() at Z:O,r:l (1.2)

In dimensional variables
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where 1, is the radius, [, is the thickness, py is the density, E is the Young modulus, and ¢ is the Poisson
ratio of the disc, while py and ¢ are the density of the medium and the acoustic velocity in it.

The initial conditions at t=0 are

Y= —22/2, Pp=—2z for. z >0, r<R
Y= Py =0 for z=0, r<1 (1.3)

Such initial conditions correspond to a unit-step pressure originating at infinity.

This mathematical formulation of the problem is quite unwieldy, and a closed analytical solution has
not been successfully obtained. Such problems usually reduce to integral equations which have to be solved
by approximation or by numerical methods (see, e.g. [1]).

Here the problem will be solved by straight numerical computations. Since computations are feasible
only for a finite and small number of parameter combinations, the problem requires a preliminary analysis,
which will be carried out in the subsequent sections 2 and 3.

Of primary interest in the problem is the deflection of the disc at its center, as a function of time,
since it is this variable which is measured in a practical test and which is used for gaging the pressure in
the medium,

2. We now consider the solution to Egs. (1.1) and (1.2) in the form*
Y = (z,rexp (iot), p—0 for z—oc0, >0 (2.1)

The existence of a solution of the (2.1) kind signifies that the disc can vibrate without damping even if
the pressure at infinity is zero and, consequently, the pressure at infinity may not be gaged by the displace-
ment of the disc.

It will be shown further that system (1.1) and (1.2) cannot have a solution of the (2.1) kind. This fact
seems quite obvious, but such solutions may exist with different boundary conditions.

We introduce function v(z) defined as

P =

Sty

¢ (z, r)rdr 2.2)

From (1.1) and condition =0 at r=R we obtain an equation for v
o+ v, =10 (2.3)

Obviously, this equation has no nontrivial solutions which vanish at infinity and, therefore, v=0. Since
@ =0, it follows from (2.2) that v(r) =0 only if ¢ (z, ¥) =0 for every r<R. Thus, system (1.1) and (1.2) has no
nontrivial solutions of the (2.1) kind.

Let us consider boundary conditions which differ from (1.2) in that =0 at r=R and 3, =Ay, =0 at z=0,
r=1. We will find the particular solution letting R=1.

* The inequality ¢ = 0 restricts somewhat the content of the statement which will be proved subsequently.
It is entirely probable, however, that this statement will remain valid also when the sign of ¢ (r, z) changes.
This is confirmed by the numerical results which yield the steady-state solution for t —«. In the special
case where R=1 (the disc takes up the entire bottom of the "tube") a simple solution is possible by the method
of separating the variables, and it becomes clearly evident here how the choice of boundary conditions affects
the occurrence of free vibrations. Inour example ¢ (r, z) certainly does not retainthe same sign [Editor's note].
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The solution will be sought in the form
Y = Iy (M) exp (for — pa) (2.4)

where J; is a Bessel function, A is the first root of equation J,(A) =0, and p and ¢ must be chosen so as to
satisfy Eq. (1.1) and the boundary conditions.

If u>0, then obviously (2.4) satisfies conditions (2.1).
Inserting (2.4) into (1.1) and (1.2), we obtain equations for ¢ and u
of 4 p? — A= 0, p(e? — el + e = (2.5)

We will prove that (2.5) always has a solution. Indeed, considering condition u>0, (2.5) can yield an
equation for ¢

@ — )2+ w0 VR —w? =0 (2.6)

It is evident that the left-hand side of this equation is a monotonic function of ; when 0 <¢; <2, being
negative when =0 but positive when ¢y —A and that, therefore (2.6) has a unique solution on the interval
0, 2).

With y and ¢ chosen so as to satisfy (2.5), then, (2.4) is a solution of the (2.1) kind.

3. We next obtain an approximate solution of the constraint problem (1.1), (1.2), and (1.3) with the ad-
ditional assumption that R=1, This solution describes the disc deflection as a function of time and contains
no information about the pressure field.

We introduce function v(t, z) defined similarly as (2.2)

1
v(t,2)=2 {9tz rdr (3.1)
0

Integrating Eq. (1.1) over r yields the following equation for v:
Uy = Uy, (3'2)
Essential use has been made here of the condition that 8¢/ar= 0atr=0, and z>0.

Integrating (1.3), we obtain the initial conditions for (3.2)

2(0, )= —212, 50, 2) = —z for z>0 (3.3)
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For simplification, the disc deflection will be sought in the form

F TN
g V \ w=0Q @ (1 — 232 3.4)
/’——~--~\~~ where Q(t) is an unknown function. The relation between w and r has
0.8 j _ /-—"_‘['];Z; been defined thus, in order that (3.4) should correctly describe the static
/// Z’ _ 5 deflection of the disc.
2z
4 =
S ¢ ”‘m; From (3.4) and (3.1) we obtain the boundary condition for (3.2):
; ; ; 7 v, (t, 0)=Y56Q0).
Fig. 6 This condition together with (3.3) defines the solution to (3.2):

t—z

v=— [ YyQds—2—2 (3.5)

Since the relation between w and r has been fixed, conditions (1.2) cannot be satisfied. We will re-
quire, then, that they be satisfied in the mean with respect to r. This will result in an equation for Q(t)

Q" + a,Q" + 960,0 = —192a, (3.6)
The initial conditions for (3.6) are obtained from (1.3) and they are Q(0) =Q'{0)=0.

Equation (3.6) is the classical equation of damped vibrations; the properties of its solution are well-
known and need not be discussed here, The results of an actual solution are plotted in Figs. 2-6 witha dashed
line.

The symmetry properties of the problem were hardly used in the derivation of (3.6) and, therefore,
the entire reasoning remains valid if the disc is of any sufficiently smooth shape, as long as it occupies the
entire bottom of the cylinder — and in that case the coefficients in (3.6) will be different.

4, We will next describe a numerical method for solving the basic problem and will show the results
of actual computations. For the special case R=1, a comparison is made with the approximate solution.

The problem is solved numerically using the conventional procedure; i.e., all derivatives are replaced
by difference ratios and the resulting system of linear algebraic equations is fed to a computer.

Equation (1.1) with conditions (1.2) and (L.3) is not amenable to a numerical treatment, because the so-
lution is sought in a semiinfinite region and the initial conditions are not continuous, so that the problem
must first be reformulated.

The singularity in the initial conditions can be easily extracted. For this purpose, the solution is writ-
ten as

P =Py + Py wherepy = (£ —2)* /2 for 2> 4, =0 for 2t
It is evident from the linearity of the problem that yy satisfies (1.1) and (1.2) with the initial conditions
P, = —2%, Py=0 at t=20

Moreover, ;=i when z <t, specifically when z=0, t>0. Since the disc deflection as a function of time
is of primary interest here, we will henceforth make no distinction between ¢ and ;.

The initial conditions contain a differential equation in y, and, therefore, it is expedient to change the
variables

w, =1, 0, 1),

p (t, z, r) = — Py (i’, z, 1)
This gives an equation for p:
Pit = Pz +AP (Apsp,.r—l-pr/r) (4:,1)
with the conditions
pr(ty O,Z) =pr(t» R1Z) =0, pl(t’rv 0" = — Wy
p©,r,2z) =2, p(0,r,2)=0 “.2)
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Now w(t, r)=0 for 1=r=R, and for r <1 the following equation:
wy + ¢, AAw + a,p = 0 “4.3)
is satisfied by w with the conditions
wy (£, 0) = wepp (£,0) = 0
wt)=w(1)=0, wO,r)=w,0,)=0 “.4)

The boundary conditions (.2) and (4.4) include one for r=0 which is based on symmetry and reduces
to the stipulation that p and w must be even functions of r if they do not depend on 9.

Relations @.1), 4.2), @.3), and @.4) are fully equivalent to the original problem for z <t.

Inasmuch as a numerical solution is feasible only within a limited region, an additional boundary con~-
dition must be entered into the problem. The semiinfinite cylinder is intersected at z=zy, and at thisbound-
ary we stipulate that

Pi+p, =0 for z=3, 4.5)

The significance of this stipulation will become clear if we consider the oblique coincidence of aplane
wave on a plane surface where (4.5) is satisfied. Let condition 4.5) be stipulated in the xz plane at z=9, and
let an incident wave p=f(t—cos az—sinqx) be given where z <0, The reflected wave will then be

p=%—1—%§§% (¢ + cos az — sin az) “.6)

If there is no boundary at z =0, there will be no reflected wave, It is evident from (4.6) that the reflec-
tion coefficient becomes zero for normal incidence (x=0) and is approximately o for small angles o.

As is to be expected, at a sufficiently large z the motion will become one-dimensional, and stipulation
(4.5) has thus been justified.

The region is bounded with respect to r, but it could happen that R>1; in this case we assume R=3,
and for r=3 we stipulate a condition analogous to ¢.5).

The problem then is to solve Egs. ¢.1)-(4.5) for the region 0=r=R, 0=z=zj, t>0.

At points inside this region Eq. (4.1) is approximated by a triple-layer explicit second-order grid,
with the intervals along the time and the space coordinates chosen so as to satisfy the Courant condition [2].
Equation (4.3) is solved by means of an implicit grid. The reason for this is that, with most of the machine
time expended on computing p at points inside the region, it is desirable to avoid additional restrictions on
the time intervals, which would enter into the computation if an explicit grid were used for (4.3).

We use the following designations: h for intervals along both r and z, and r for the time intervals,

pi* = p kv, hi, k), —2<k, 0<i<Kng, —1<<j<n,
ng = Rk, ny=zy/h, w =w kv, hi), 0<Li<<n, n=1/h
In order to satisfy the Courant condition, we let h=27.

In order to approximate the m-th derivative of function f£{), we introduce central difference operators
6§m and unilateral difference operators dgm along £, in accordance with

8= g G +E) —FE —E)l, 8% = —z [/ +80) — 2 (&) + F & —E)]
delf = —— [31(8) — 4F (& — &) + 1 € — 280)] @.7)

de?f = g [2£(§) — 5 (& — &) -+ 4f (§ — 28) — / (& — 38)]

where &=7 if £=t and g=h if i=1, 2.

For an approximation of A we introduce operator q=06,2+r718,1, It is evident that these operators ap-
proximate the respective derivatives within a second-order accuracy.

For Eq. (4.1) we use a triple-layer explicit grid
(612‘612;_Q)piik=01 0<k, 0<i<lmy, 0Kj<my “.8)
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The boundary conditions for (4.8) become
(@ +adY)py* =0 at j=In, 0<i<n,
dpei* =0 for 0<Cj<n, @.9)
(@' + add) py* =0 at i=ny, 0<j<
where g=1if R=3 and ¢=0 if K<3.

The boundary condition at z=0 is p; +wi =0. For an approximation of this condition we introduce ficti-
tious points j=—1 according to the formula

Pl 1= pE1 + 2hdfw® (4.10)
and assume that (4.8) is valid for j=0.
By virtue of the condition py+wit =0, Eq. 4.3) transforms into
(1 + ash)wy; + a,AAw + ap(t,r,h) +0(h?) =0
and is approximated by a quadruple-layer implicit grid
(1 4 ash) d2w¥ + a,9qwi® 4 apf 1 =0, £ >1 @.11)

The significance of this not quite obvious transformation can be explained on the example of the one-
dimensional equation pgt=pyzy, with the boundary conditions wit=—asp, pz+wtt=0 at z=0 and the initial con-
ditions w=w; =0, p=pt=0at t=0.

Letting h=T, we obtain analogously to 4.8)

k+1
P;

=P§+1+P?_1—P7‘:—1 E] 0<i<°°! ng
pt=pt=1, —1<j , @.12)
The fictitious points j=—1 are introduced analogously to (4.10)
PEy = P 2y, @.13)
Let us consider two ways of approximating Eq. (4.13). The first way is according to 4.3), the other
way is according to (4.11)

wtt+azpok=0, (14 azh) wtt—I—aszK:O “4.14)

We can infer from (4.12) that P%i-ﬁi"p%i{= 0 for j= 0, k= 0. From this we obtain an equation for p%f

P4 200k — pEl =0 (4.15)

based on the first method of approximating the boundary conditions, or

1 —ash
K+l k-
Pt T =0 @.16)

based on the second method.
It is evident that (4.16) is stable for any h= 0 while (4.15) is unstable for every h>0,

The boundary conditions for 4.3) at r=1are: w=0 and wp=0. The interval along r has been chosen
so as to make r=1 a point on the grid and, therefore, the first of these conditions is satisfied exactly.

We now introduce the fictitious point r=1+h, and the second boundary condition becomes Wy =Wp—_4.

In order to approximate the conditions at r=0, we introduce fictitious points r=—h and r=—2h making
the boundary conditions w_y =wj and w_y=wy. Equation (4.11) is assumed valid for 0 =i=n—1. Equation {4.3)
has a singularity at r=0, however, which makes it necessary to modify (4.11) at i=0.1.

A relatively simple calculation will show that

AAw = 16 (wy — 4wy -+ Bwo) /3ht J-0 (h?) for r=0 4.17)

20 26
AAw:(Zws— 3 w? - Tw;—4wo)/h4+o(h2) for r=h

Therefore, at i =0.1 we must replace expression qqwj in (4.11) by the right-hand sides of (4.12).
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The initial conditions for k=0, —1, and —2 are taken as

P:ijzL OI<iKm, —I1<i<ns, vwl=wl=uw’=0, 0i<n

Equation (4.11) is of the pentadiagonal type and there exists for it an efficient method of iteration [2],
which will be used here,

The system of finite-difference equations (4.8)-{4.11) approximates the original system; it is neces-
sary to estimate the incurred error, however, since this error will determine the reliability of the results.
Henceforth the function wy({t) =wt, 0) will be understood to be the solution.

We consider the static problem, which corresponds to @.1)-@.4). This is the problem when 3/5t=0
in (4.1)~(4.4) and the initial conditions are removed. The obvious solution to it is

p=2, w{)=— *3—;%1*-0'2—1)2 4.18)

A finite-difference approximation of this problem is obtained by letting d¢®=6¢%=0 in 4.8)-(4.11). The
resulting system of equations, too, has a simple solution:
az

Piy=2, w =~ (1_—;1_)(1“'%-_&) @.19)

n?

From (4.18) and (4.19) we obtain an expression for the approximation error

we — W (0) 2 5
¥rom physical considerations and onthe basis of the analysis insection 2, it appears probable that the solu-
tion of (4.1)-@.4) will approach the steady-state solution as t—e and, therefore, (4.20) may be treated as a
conservative estimate of the maximum error.

This analysis applies to the error in approximating the space derivatives, and advantage hasbeentaken
of the fact that excluding the time dependence simplifies the situation considerably. The time derivatives
can be treated in an analogous manner.

Inasmuch as a fitting specific case cannot be found, a model problem was used for evaluation. A one-
dimensional problem was considered for Eq. (3.2) with the boundary conditions (3.4) and (3.6).

The problem has an exact solution, which could be obtained from (3.6). Equation (3.2) as well as the
boundary and the initial conditions were replaced by finite~difference equations analogous to ¢.8)-(4.11).
These equations were solved on the interval 0=t=10 and the mean-squared deviation of the resulting solu-
tion from the exact solution was calculated.

The numerical value of this deviation for the various parameter values is denoted by ¢ and shown in
Figs. 2-6.

The results obtained for specific values of parameters ¢, and a, are shown in Figs. 2-6. Curves 1
represent w(t) for R=1, n=ng=10, and ny =30, while curves 2 represent wy(t) for R=3, n=10, and ny=n;=30,
with the solution to (3.6) shown by a dashed line. Obviously, various values of the dimensional parameters
may correspond to the same combination of ¢, and a,. One may assume that all parameters for the graphs
in Figs. 2-4 are the same except the disc thickness, for example, which decreases by a factor of 2,0 from
graph to graph, and that the graphs in Figs. 5 and 6 are the same as in Figs, 2 and 3, except for a 10 times
higher modulus of elasticity. For sufficiently rigid discs, obviously, all curves will be close and, in particu-
lar, curves 1 and 2 in Fig. 2 will merge within plotting accuracy.

In summarizing, we conclude that (3.6) yields a quantitatively satisfactory solution for sufficiently
rigid discs and that also otherwise the agreement with the exact solution is qualitatively close.

The authors thank L. M. Flitman for reviewing the work.
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